还剩20页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
初一上学期数学知识点总结归纳篇5初一上学期数学知识点总结归纳1
(一)正负数
1.正数大于0的数
2.负数小于0的数
3.0即不是正数也不是负数
4.正数大于0,负数小于0,正数大于负数
(二)有理数
1.有理数由整数和分数组成的数包括正整数、
0、负整数,正分数、负分数可以写成两个整之比的形式(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的如冗)
2.整数正整数、
0、负整数,统称整数
3.分数正分数、负分数
(三)数轴
1.数轴用直线上的点表示数,这条直线叫做数轴(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点)
2.数轴的三要素原点、正方向、单位长度
3.相反数只有符号不同的两个数叫做互为相反数0的相反数还是
04.绝对值正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小
(四)有理数的加减法
1.先定符号,再算绝对值
2.加法运算法则同号相加,到相同符号,并把绝对值相加异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得0一个数同0相加减,仍得这个数
3.加法交换律a+b=b+a两个数相加,交换加数的位置,和不变⑵有两个或两个以上字母的多项式,排列时,要注意a、先确认按照哪个字母的指数来排列b、确定按这个字母降幕排列,还是升幕排列
3、整式单项式和多项式统称为整式
4、列代数式的几个注意事项⑴数与字母相乘,或字母与字母相乘通常使用“-”乘,或省略不写;⑵数与数相乘,仍应使用“X”乘,不用“-”乘,也不能省略乘号;⑶数与字母相乘时,一般在结果中把数写在字母前面,如aX5应写成5a;⑷带分数与字母相乘时,要把带分数改成假分数形式;⑸在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3+a写成3/a的形式;6a与b的差写作a—b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a—b和b—a初中数学实数知识点平方根
①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根
③一个正数有2个平方根/0的平方根为0/负数没有平方根
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数立方根
①如果一个数X的立方等于A,那么这个数X就叫做A的立方根
②正数的立方根是正数、0的立方根是
0、负数的立方根是负数
③求一个数A的立方根的运算叫开立方,其中A叫做被开方数实数
①实数分有理数和无理数
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样
③每一个实数都可以在数轴上的一个点来表示初中提高数学成绩诀窍数学不能只依靠上课听得懂很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎这类问题都是学生在课堂上都以为自己听得懂就够了初中同学要首先对数学做一个认知,听得懂W会做,会做W拿的到分听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步三个重要的数学思想
1、方程的思想数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系最常见的等量关系就是方程
2、数形结合的思想任何一道题,只要与形沾边,就应该根据题意中的草图分析一番这样做,不但直观,而且全面,整体性强
3、对应的思想初中生数学成绩的提高,需要靠自己勤加练习和脚踏实地的去接受数学初一上学期数学知识点总结归纳4数轴
1.数轴的概念规定了原点,正方向,单位长度的直线叫做数轴注意⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系(如,数轴上的点n不是有理数)
3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小
4.数轴上特殊的(小)数⑴最小的自然数是0,无的自然数;⑵最小的正整数是1,无的正整数;⑶的负整数是-1,无最小的负整数
5.a可以表示什么数⑴a0表示a是正数;反之,a是正数,则a0;⑵a0表示a是负数;反之,a是负数,则a0⑶a=0表示a是0;反之,a是0,,则a=0初一上学期数学知识点总结归纳5第一章丰富的图形世界
1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形
2、点、线、面、体
①几何图形的组成点线和线相交的地方是点,它是几何图形中最基本的图形线面和面相交的地方是线,分为直线和曲线面包围着体的是面,分为平面和曲面体几何体也简称体
②点动成线,线动成面,面动成体
3、生活中的立体图形生活中的立体图形(按名称分)柱
①圆柱
②棱柱三棱柱、四棱柱(长方体、正方体)、五棱柱、……锥
①圆锥
②棱锥球
4、棱柱及其有关概念棱在棱柱中,任何相邻两个面的交线,都叫做棱侧棱相邻两个侧面的交线叫做侧棱n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点
5、正方体的平面展开图11种(经常考考试形式展开的图形能否围成正方体;正方体对面图案)
6、截一个正方体用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形、三视图7物体的三视图指主视图、俯视图、左视图主视图从正面看到的图,叫做主视图左视图从左面看到的图,叫做左视图俯视图从上面看到的图,叫做俯视图第二章有理数及其运算
1、有理数的分类
①正有理数有理数{
②零
③负有理数有理数{
①整数
②分数
2、相反数只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时,三要素缺一不可任何一个有理数都可以用数轴上的一个点来表示
4、倒数如果a与b互为倒数,则有ab=L反之亦成立倒数等于本身的数是1和一lo零没有倒数
5、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,|a|^0o若|a|=a,则aNO;若|a|=-a,则aWO正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是Oo互为相反数的两个数的绝对值相等
6、有理数比较大小正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小、有理数的运算7
①五种运算力口、减、乘、除、乘方多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正只要有一个数为零,积就为零有理数加法法则同号两数相加,取相同的符号,并把绝对值相加异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值一个数同0相加,仍得这个数互为相反数的两个数相加和为Oo有理数减法法则减去一个数,等于加上这个数的相反数!有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘任何数与0相乘,积仍为0有理数除法法则两个有理数相除,同号得正,异号得负,并把绝对值相除0除以任何非0的数都得0注意0不能作除数有理数的乘方求n个相同因数a的积的运算叫做乘方正数的任何次幕都是正数,负数的偶次幕是正数,负数的奇次幕是负数
②有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的
③运算律(5种)加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律
8、科学记数法一般地,一个大于10的数可以表示成aX10n的形式,其中IWnGO,n是正整数,这种记数方法叫做科学记数法(n=整数位数一1)第三章整式及其加减
1、代数式用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式单独的一个数或一个字母也是代数式注意
①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、等符号等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义代数式的书写格式
①代数式中出现乘号,通常省略不写,如Vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数
④数字与数字相乘,一般仍用“X”号,即“义”号不省略;
⑤在代数式中出现除法运算时,一般写成分数的形式;注意分数线具有“+”号和括号的双重作用
⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面
2、整式单项式和多项式统称为整式
①单项式都是数字和字母乘积的形式的代数式叫做单项式单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数注意单独的一个数或一个字母也是单项式;单独一个非零数的次数是0;当单项式的系数为1或一1时,这个“1”应省略不写,如一ab的系数是一1,a3b的系数是lo
②多项式几个单项式的和叫做多项式多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数
③同类项所含字母相同,并且相同字母的指数也相同的项叫做同类项注意
①同类项有两个条件a所含字母相同;b相同字母的指数也相同
②同类项与系数无关,与字母的排列顺序无关;
③几个常数项也是同类项
4、合并同类项法则把同类项的系数相加,字母和字母的指数不变
5、去括号法则
①根据去括号法则去括号括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号
②根据分配律去括号括号前面是“+”号看成+1,括号前面是“一”号看成一1,根据乘法的分配律用+1或一1去乘括号里的每一项以达到去括号的目的
6、添括号法则添“+”号和括号,添到括号里的各项符号都不改变;添“一”号和括号,添到括号里的各项符号都要改变、整式的运算7整式的加减法
(1)去括号;
(2)合并同类项第四章基本平面图形
1、线段、射线、直线名称表示方法端点长度直线直线AB(或BA)直线1无端点无法度量射线射线0M1个无法度量线段线段AB(或BA)线段12个可度量长度
2、直线的性质
①直线公理经过两个点有且只有一条直线(两点确定一条直线)
②过一点的直线有无数条
③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小
3、线段的性质
①线段公理两点之间的所有连线中,线段最短(两点之间线段最短)
②两点之间的距离两点之间线段的长度,叫做这两点之间的距离
③线段的大小关系和它们的长度的大小关系是一致的
4、线段的中点点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点AM=BM=1/2AB(或AB=2AM=2BM)
4.加法结合律(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
5.ab=a+(b)减去一个数,等于加这个数的相反数
(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘任何数同0相乘,都得
02.乘积是1的两个数互为倒数
3.乘法交换律ab=ba
4.乘法结合律(ab)c=a(bc)
5.乘法分配律a(b+c)=ab+ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果
2.除以一个不等于0的数,等于乘这个数的倒数
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0
(七)乘方
1.求n个相同因数的积的运算,叫做乘方写作an(乘方的结果叫幕,a叫底数,n叫指数)
2.负数的奇数次嘉是负数,负数的偶次幕是正数;0的任何正整数次幕都是
03.同底数幕相乘,底不变,指数相加
4.同底数幕相除,底不变,指数相减(A)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减
2.同级运算,从左到右进行
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行
(九)科学记数法、近似数、有效数字初一上学期数学知识点总结归纳2第一章有理数
1.1正数和负数
①把0以外的数分为正数和负数0是正数与负数的分界
5、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边或角也可以看成是一条射线绕着它的端点旋转而成的
6、角的表示角的表示方法有以下四种
①用数字表示单独的角,如Nl,Z2,N3等
②用小写的希腊字母表示单独的一个角,如/a,NB,Zy,N等
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如NB,NC等
④用三个大写英文字母表示任一个角,如NBAD,ZBAE,NCAE等注意用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧
7、角的度量角的度量有如下规定把一个平角180等分,每一份就是1度的角,单位是度,用”表示,1度记作“1°”,n度记作“n°”把1°的角60等分,每一份叫做1分的角,1分记作“1’”把1的角60等分,每一份叫做1秒的角,1秒记作“1””1°=60,r=60”
8、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线
9、角的性质
①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关
②角的大小可以度量,可以比较,角可以参与运算
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角终边继续旋转,当它又和始边重合时,所形成的角叫做周角n、多边形由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形连接不相邻两个顶点的线段叫做多边形的对角线从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形
12、圆平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆固定的端点0称为圆心,线段0A的长称为半径的长(通常简称为半径)圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、0B所组成的图形叫做扇形顶点在圆心的角叫做圆心角第五章一元一次方程
1、方程含有未知数的等式叫做方程
2、方程的解能使方程左右两边相等的未知数的值叫做方程的解
3、等式的性质
①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式
②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式
4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程
5、移项把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项
6、解一元一次方程的一般步骤
①去分母
②去括号
③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项)
④合并同类项
⑤将未知数的系数化为1第六章数据的收集与整理
1、普查与抽样调查为了特定目的对全部考察对象进行的全面调查,叫做普查其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本2^扇形统计图扇形统计图利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图(各个扇形所占的百分比之和为1)圆心角度数=360°义该项所占的百分比(各个部分的圆心角度数之和为360°)
3、频数直方图频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数
4、各种统计图的特点条形统计图能清楚地表示出每个项目的具体数目折线统计图能清楚地反映事物的变化情况扇形统计图能清楚地表示出各部分在总体中所占的百分比初一上学期数学知识点总结归纳
②负数比0小的数正数比0大的数0既不是正数,也不是负数
1.2有理数
1.
2.1有理数
①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数
②所有正整数组成正整数集合,所有负整数组成负整数集合正整数,0,负整数统称整数
1.
2.2数轴
①具有原点,正方向,单位长度的直线叫数轴
1.
2.3相反数
①只有符号不同的数叫相反数
②0的相反数是0正数的相反数是负数负数的相反数是正数
1.
2.4绝对值
①绝对值|a|
②性质正数的绝对值是它的本身负数的绝对值的它的相反数0的绝对值的
01.
2.5数的大小比较
①数学中规定在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数
②正数大于30大于负数,正数大于负数两个负数,绝对值大的反而小
1.3有理数的加减法
1.
3.1有理数的加法
①同号两数相加,取相同的符号,并把绝对值相加
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得Oo
③一个数同0相加,仍得这个数
④加法交换律两个数相加,交换加数的位置,和不变a+b=b+a
⑤加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变a+b+c=a+c+b
1.
3.2有理数的减法
①减去一个数,等于加这个数的相反数a-b=a+-b
1.4有理数的乘除法
1.
4.1有理数的乘法
①两数相乘,同号得正,异号的负,并把绝对值相乘
②任何数同0相乘,都得0
③乘积是1的两个数互为倒数
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数
⑤乘法交换律两个数相乘,交换因数的位置,积相等ab=ba
⑥乘法结合律三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等ab c=acb
⑦乘法分配律一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加ab+c=ab+ac
1.
4.2有理数的除法
①除以一个不等0的数,等于乘以这个数的倒数
②两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数,都得0
③乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果
④有理数的加减乘除混合运算,如无括号指出先做什么运算,则按照先乘除,后加减的顺序进行L5有理数的乘方
1.
5.1乘方
①求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幕a叫做底数,n叫做指数
②负数的奇次嘉是负数,负数的偶次幕的正数
③正数的任何次累都是正数,0的任何正整数次幕都是0
④做有理数的混合运算时,应注意以下运算顺序
1.先乘方,再乘除,最后加减;
2.同级运算,从左到右进行;
3.如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行
4.
5.2科学记数法
①把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法
1.
5.3近似数
①一个数只是接近实际人数,但与实际人数还有差别,它是一个近似数
②近似数与准确数的接近程度,可以用精确度表示
③从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字第二章整式的加减
2.1整式
①单项式表示数或字母积的式子
②单项式的系数单项式中的数字因数
③单项式的次数一个单项式中,所有字母的指数和
④几个单项式的和叫做多项式每个单项式叫做多项式的项,不含字母的项叫做常数项
⑤多项式里次数最高项的次数,叫做这个多项式的次数
⑥单项式与多项式统称整式
2.2整式的加减
①同类项所含字母相同,而且相同字母的次数相同的单项式
②把多项式中的同类项合并成一项,叫做合并同类项
③合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
④如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同
⑤如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反
⑥一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项第三章一元一次方程
2.1从算式到方程
3.
1.1一元一次方程
①方程含有未知数的等式
②一元一次方程只含有一个未知数,而且未知数的次数是1的方程
③方程的解使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法
4.
1.2等式的性质
①等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等
②等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等
①把等式一边的某项变号后移到另一边,叫做移项
3.3解一元一次方程
(二)去括号与去分母
①一般步骤
1.去分母
2.去括号
3.移项
4.合并同类项
5.系数化为一
3.4实际问题与一元一次方程利用方程不仅能求具体数值,而且可以进行推理判断第四章图形认识初步
4.1多姿多彩的图形
4.
1.1几何图形
①把实物中抽象出的各种图形统称为几何图形
②几何图形的各部分不都在同一平面内,是立体图形
③有些几何图形的各部分都在同一平面内,它们是平面图形
④常常用从不同方向看到的平面图形来表示立体图形(主视图,俯视图,左视图)
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图
4.
1.2点,线,面,体
①几何体也简称体
②包围着体的是面面有平的面和曲的面两种
③面和面相交的地方形成线(线有直线和曲线)
④线和线相交的地方是点(点无大小之分)
⑤点动成线,线动成面,面动成体
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界
⑧线段的比较
1.目测法
2.叠合法
3.度量法
4.2直线,射线,线
①经过两点有一条直线,并且只有一条直线
②两点确定一条直线
③当两条不同的直线有一个公共点时、就称这两条直线相交,这个公共点叫做它们的交点
④射线和线段都是直线的一部分
⑤把线段分成相等的两部分的点叫做中点
⑥两点的所有连线中,线段最短(两点之间,线段最短)
⑦连接两点间的线段的长度,叫做这两点的距离
4.3角
4.
3.1角
①角也是一种基本的几何图形
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边角可以看作由一条射线绕着它的端点旋转而形成的图形
③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1;把1分的角60等分,每一份叫做1秒的角,记作1〃
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的
⑤以度,分,秒为单位的角的度量制,叫做角度制
4.
3.2角的比较与运算
①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线
4.
3.3余角和补角
①两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角
②两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角
③等角的补角相等
④等角的余角相等初一上学期数学知识点总结归纳3代数式中的一种有理式不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式(分母中含有字母有除法运算的,那么式子叫做分式)
1、单项式数或字母的积(如5n),单个的数或字母也是单项式
(1)单项式的系数单项式中的数字因数及性质符号叫做单项式的系数(如果一个单项式,只含有数字因数,系数是它本身,次数是0)⑵单项式的次数一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)
2、多项式⑴概念几个单项式的和叫做多项式在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项一个多项式有几项就叫做几项式⑵多项式的次数多项式中,次数最高的项的次数,就是这个多项式的次数⑶多项式的排列把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幕排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幕排列在做多项式的排列的题时注意
(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。