还剩22页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
《集合与运算》PPT课件•集合的基本概念目•集合的运算录•集合运算的性质•集合运算的应用•总结与回顾CONTENTS01集合的基本概念CHAPTER集合的定义总结词明确性、确定性、无序性详细描述集合是由确定的元素所组成的,每一个元素在集合中都有其唯一的位置,并且集合中的元素是无序的,即元素的排列顺序不影响集合的定义集合的表示方法总结词列举法、描述法详细描述列举法是通过一一列出集合中的元素来表达集合,而描述法则是通过元素的性质来表达集合这两种方法各有优缺点,应根据实际情况选择使用集合的分类总结词有限集、无限集、空集详细描述根据集合中元素的个数,可以将集合分为有限集和无限集;根据集合中是否存在元素,可以将集合分为空集和非空集这些分类对于理解集合的性质和运算具有重要意义02集合的运算CHAPTER集合的交集总结词表示两个集合中共有的元素组成的集合详细描述交集是指两个集合中共有的元素组成的集合,记作A∩B可以通过列举两个集合中的元素,找出共同的元素,形成新的集合集合的并集总结词表示两个集合中所有元素组成的集合详细描述并集是指两个集合中所有元素组成的集合,记作A∪B可以通过列举两个集合中的所有元素,包括重复元素,形成新的集合集合的差集总结词表示在第一个集合中但不在第二个集合中的元素组成的集合详细描述差集是指第一个集合中但不在第二个集合中的元素组成的集合,记作A−B可以通过列举第一个集合中的所有元素,排除与第二个集合共有的元素,形成新的集合集合的对称差集总结词表示在两个集合中但不同时存在的元素组成的集合详细描述对称差集是指两个集合中但不同时存在的元素组成的集合,记作A⊕B可以通过列举两个集合中的所有元素,排除同时存在的元素,形成新的集合03集合运算的性质CHAPTER交换律交换律定义交换律的应用对于任意两个集合A和B,如果在解决集合问题时,利用交换律可以A∪B=B∪A和A∩B=B∩A,则称集合简化计算过程,避免不必要的重复和的并和交运算满足交换律错误交换律的意义交换律是集合运算中最基本的性质之一,它表明并和交运算不依赖于集合的顺序,即集合的元素排列顺序不会影响运算结果结合律结合律的意义结合律表明并和交运算满足结合性,结合律定义即集合的并和交运算可以按照任意方式分组进行,不会改变运算结果对于任意三个集合A、B和C,如果A∪B∪C=A∪B∪C和A∩B∩C=A∩B∩C,则称集合的并和交运算满足结合律结合律的应用在解决复杂的集合问题时,利用结合律可以将问题分解为更小的部分,简化计算过程,提高解题效率分配律分配律定义对于任意三个集合A、B和C,如果A∪B∩C=A∪B∩A∪C和A∩B∪C=A∩B∪A∩C,则称集合的运算满足分配律分配律的意义分配律是集合运算中非常重要的性质之一,它表明并和交运算可以分配给其他运算,即并和交运算可以与其他运算进行组合,而不会改变运算结果分配律的应用在解决集合问题时,利用分配律可以将问题分解为更小的部分,简化计算过程,提高解题效率同时,分配律也是证明其他集合定理和性质的重要工具04集合运算的应用CHAPTER在数学中的应用010203集合论代数几何集合运算在集合论中有着集合运算在代数中用于描集合运算在几何中用于描广泛的应用,用于研究集述和操作代数结构,如群、述和操作几何对象,如点、合的性质和关系环、域等线、面等在计算机科学中的应用数据结构算法设计数据库系统集合运算在数据结构中用集合运算在算法设计中用集合运算在数据库系统中于实现各种数据结构,如于实现各种算法,如排序、用于实现数据操作,如插数组、列表、集合、图等查找、图算法等入、删除、更新等在日常生活中的应用统计学经济学物理学集合运算在统计学中用于处理数集合运算在经济学中用于描述和集合运算在物理学中用于描述和据和分析结果,如样本、总体、预测经济现象,如市场、供需关解释物理现象,如力、能量、动概率等系等量等05总结与回顾CHAPTER本章重点回顾01020304集合的基本概念集合的表示方法集合的基本运算集合运算的性质集合是由具有某种特定属性的列举法和描述法是表示集合的并集、交集、差集等是集合的集合运算具有交换律、结合律、事物的总体所构成的整体常用方法基本运算分配律等性质常见问题解答答问题1判断两个集合是否相等,需要比较两个集合如何判断两个集合是否相等?0102的元素是否完全相同问题2答如何求两个集合的交集和并集?0304求两个集合的交集,需要找出同时属于两个集合的元素;求两个集合的并集,需要将两个集合中的所有元素合并在一起问题3答如何求集合的补集?0506求一个集合的补集,需要找出不属于该集合的所有元素,并将它们合并成一个新的集合下章预告•下章将介绍集合的子集和幂集的概念,以及它们在数学中的应用同时,还将介绍集合的运算性质和证明方法THANKS感谢您的观看。