还剩18页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
YOUR LOGO20XX.XX.XX元一次不等式的课件大PPT纲PPT,a clickto unlimitedpossibilities汇报人PPT01单击添加目录项标题02元一次不等式的概念和性质目录03元一次不等式的解法04元一次不等式的应用05元一次不等式的扩展01添加章节标题02元一次不等式的概念和性质元一次不等式的定义元一次不等式含有一个未知数,且未知数的最高次数为1的不等式符号大于、小于、大于等于、小于等于解集不等式的解集是一个集合,表示满足不等式的所有实数性质元一次不等式的解集是一个区间或半开半闭区间元一次不等式的表示方法区间表示用区间(a,b)集合表示用集合(A,B)表示不等关系表示不等关系符号表示用大于号()、数轴表示用数轴上的点表小于号()、等于号(=)示不等关系表示不等关系元一次不等式的性质解集元一次不等式的解集是一个集合,表示所有满足不等式的x的值解集与数轴的关系元一次不等式的解集在数轴上表示为实数轴上的一段或几段解集的性质元一次不等式的解集具有封闭性、有序性和连续性解集的表示方法元一次不等式的解集可以用区间表示,也可以用数轴表示03元一次不等式的解法代数法解元一次不等式解一元一次不等式的基本步骤解一元一次不等式的基本方法解一元一次不等式的注意事项解一元一次不等式的应用实例几何法解元一次不等式几何法解元一次几何法解元一次几何法解元一次几何法解元一次不等式的定义不等式的步骤不等式的应用不等式的优缺点参数法解元一次不等式什么是参数法通过引入参数,将不等式转化为等式,然后求解参数的方法单击此处输入你的项正文,文字是您思想的提炼,言简的阐述观点参数法的步骤a.引入参数b.转化为等式c.求解参数d.得出结论a.引入参数b.转化为等式c.求解参数d.得出结论参数法的应用适用于含有参数的元一次不等式单击此处输入你的项正文,文字是您思想的提炼,言简的阐述观点参数法的优缺点优点是可以解决含有参数的元一次不等式,缺点是计算量较大,需要一定的技巧和经验单击此处输入你的项正文,文字是您思想的提炼,言简的阐述观点04元一次不等式的应用在数学中的应用解不等式求解一元一次不等解方程组求解含有一元一次式,确定解集不等式的方程组证明不等式证明一元一次不求解最优解求解一元一次不等式,确定最优解等式成立在物理中的应用力学解决力学问题中的力、速度、加速度等关系热学解决热学问题中的温度、热量、热效率等关系电学解决电学问题中的电压、电流、电阻等关系光学解决光学问题中的折射率、反射率、透射率等关系在经济中的应用价格决策通过不等式分析商品价格与销量的关系成本控制通过不等式计算生产成本与利润的关系投资决策通过不等式分析投资收益与风险的关系市场预测通过不等式预测市场需求与供应的关系05元一次不等式的扩展元一次不等式的变种l线性不等式形如ax+b0或ax+b0的不等式l非线性不等式形如ax^2+bx+c0或ax^2+bx+c0的不等式l绝对值不等式形如|ax+b|0或|ax+b|0的不等式l指数不等式形如a^x+b0或a^x+b0的不等式l对数不等式形如logax+b0或logax+b0的不等式l复合不等式形如ax+b/cx+d0或ax+b/cx+d0的不等式元一次不等式与其他数学知识的结合l线性规划元一次不等式在求解线性规划问题中的应用l概率论元一次不等式在概率论中的概率分布和期望计算中的应用l微积分元一次不等式在微积分中的极限、导数和积分计算中的应用l几何学元一次不等式在几何学中的面积、体积和距离计算中的应用元一次不等式的实际应用案例经济问题价格比较、成本效益分析等工程问题材料选择、结构设计等数学竞赛不等式证明、不等式求解等物理问题力学、热力学、电磁学等中的不等式应用YOUR LOGOTHANKYOU汇报人PPT。