还剩6页未读,继续阅读
文本内容:
第13讲三大题型各有规律,视角不同方法绝妙典型例题[例1]已知3a匚0为函数/x=cos2x~—4\8J3n号-Ib=cosa2且a.b=求2cos%+而23+0I\4cosa-sina【例2】sin410°+sin450°+5m470°的值.【例3】求证in,cosx_2sinx-cosx1+cosx1+sinx1+sinx+cosx[例4]已知tan2a=2tan2p+1,求证:sin2f3=2sin2a-1强化训练
4、尺
1.已知a、£为锐角,tana=—cosa+0=⑴求cos2a的值;⑵求tana-p的值.
2.1已知cosa+cosp+cos/=0sincr+sin/+sin/=0由此你能得出哪些结论至少写出三个;2已知Qa/3y2^coscr+cosP+cos/=0sina4-sin4-sin/=0^尸-a的值.解答过程例1】已知0°£/为函数/x=cos2x--A8□_p.2cos2a+sin2a+f3a=tana+—,-lb=cosa2且a・b=/篦,求-II4ycosa-sina【解析】【解法1】“为/%=cos兀、2x-g的最小正周期,,尸=8J
1、71的最小正周期,的值.ab=mx1乂a・b=cosatana-\--3一2故costana+-B=m+24ooo由于0a〃2cosa+sin2a+,_2cosa+sin2a+2»2cosa+sin2a〈了..cosa-sinacosa-sina2cosa+2sinacosa2cosacosa+sina81+tana==2cosacos一sinacosa-sina1-tancos一sinan2costanaH——2m+2【解法2】[例2]求s加410+s#50+s近470°的值.【解析】【解法1】原式=sin2asit1/3+cos26Zcos21一耳991/9999\=sirrasin/+cosacos4一]4cosacos4一2cosa-2cos£+10099oo।=sinasin—cosacos/+coser4-cos/一万..c2・2c2cl=sm6rsin~p+cosasmp+cosp——09\o1sina+cosaj4-cos^-―.n2cli11=sinp4-cosp——=1——=—222【解法2】2\2Il-sinacos尸-qCOS22cos2/=cos2y^-sin2cr^cos2/-sin20-geos2acos邛=cos2p-sin2acos2/-^cos2acos2/=cos尸一cos2/7sin2a+—coslaI2_l+cos2/7_CQS2^sin2«+^l-2sin2a]1+cos2411二cos2p=—222【解法3】目“1-cos2tz1-cos2/71+cos2cH+cos2/
71.“原式=+——cos2acos2B22222=—1+cos2acos2£-cos2a-cos2/3+—1+cos2acos2/7+cos2a+cos20441-1——cos2acos2p=—22【解法4】原式=sinasinj3-cosacos/2+2sinasin[3cosacosA—gcos2acos2/21i=cosa+力+—sin2asin2/3——cos2acos2p=cos2a+/3——cos2a+20=cos2a-F/——x2cos2a+/-l=—【例3】求证:【解析】sinxcosx_2sinx-cosx1+cosxl+sinx1+sinx+cosx【解法1】左边=・.22sinx+sinx-cosx-cosx1+cosxl+sinxsinx-cosxl+sinx+cosx1+sinx+cosx+cosxsinx2sinx一cosxl+sinx+cosx=%1+sirrx+cosx+2sinx+2cosx+2cosxsinx2sinx-cosxl+sinx+cosx1+sinx+cosx22sinx-cosx1+sinx+cosr—右边・•.所证等式成立.・立刀、工l+sinx+cosxfsinxcosx【解法2]左边二l+sinx+cosxk1+cosx1+sinx1sinxl+sinx+cosxcosxl+sinx+cosxl+sinx+cosx|_1+cosx1+sinx
1.sinxcosx=sinx+cosxl+sinx+cosx11+cosx1+sinxsinx+1-cosx-cosx-1+sinx1+sinx+cosx2sinx-cosx1+sinx+cosx=右边所证等式成立.【解法3】cos*_l-sinA_cosx+l-sinA l+sinxsinxI-cosxcosx1+sinx+cosxsinx+1-cosxI+cosxsinxsinxcosxI+sinx+cosxsinx+1—cosxcosx+1—sinx2sinx-cosxI+cosxl+sinxl+sinx+cosxl+sinx+cosx14-sinx+cosx・・.所证等式成立.【例4]已知幻/=ztan/+l求证:sin尸=2sina-\[2:r2•2][3:+tana.sina1+^-][4:cosa]【解析】【解法1】tan2a=2tan2/+l「.tan2/=,tan2a—l==sin
2、cos231—sin2P.20tan2^/.sinB=——tan2/+lsin2a]tan2fz-l_cos2a・29sin~a-cos-a.2=——=2sina-\sina+cosa【解法2】t.tan2a=2tan24-11+tan2cif=2^1+tan2/3^I-sintz.\sinp=2sina-I强化训练4J51已知a、为锐角,tana=—cosa+/7=⑴求cos2a的值;2求tan2—尸的值.【解析】227即cos2a=cosa-sina=2577171⑵【解法1]由cos2a=,2为锐角・・一va—sin2a02542sin2«=Jl-cos22a=11一7丫l-25j2425cosa+夕=_^~a、4均为锐角,工a+/3ti52r一cr+]=cos2ofcoscr+夕+sin2crsina+夕=~~~2y即sina—6=sin[2a—o+/]=sin20cosa+尸一cos2«sin«+/=一一./、sina—£2・•.tan二一⑶=——=——、7cos«-^117I24【解法2]:a为锐角cos2a=2a£0二sin2=一cos2a=—25v725c24tan2a=7a、〃均为锐角a+/7eO;r又cosa+〃=一包sina+tancr+/=-2=2-i+-2f-^rn-\
72.
(1)已知coso+cos,+cos/=0sina+sin/+sin7=0由此你能得出哪些结论(至少写出三个);2已知0a/3V/2肛cos2+cos,+cos/=0sin2+sin/+sin7=0求p-a的值.【解析】1【解法1】已知式两边平方、相加,得cos2a+cos2/+cos2/+2cosacos£+2cos^cosy+2cos/cos«+sin2+sin2^+sin2/+2sinasin尸+2sin^sin/+2sin/sina=0即3+2[8$一/+85/一7+8$7-二]=03cosa-77+cos/-/+cosy-a=--cosa+cos/3=-cosy【解法2】移项,得1”/[sina+sin尸=-sin/I2+22,得cosa—0二―L同理可得cos£_y=cos7-6z.相乘得coso_/cos/_/cos—a=_!.8【解法3]设点AcosasinaBcos£sin/Ccos/sin7则A、上,原点为ABC的外心.因3点到的距离相等且等于1根据重心公式得C3点在单位圆Gx=-cos«+cos/+cos/=0Gv=,sina+sin+sin/=
0.即重心G与外心0重合,故ABC为正三角形.2解:由题设,得cos/=-cosa-cos/[sin/=-sincr一sin尸,⑴2+22得1=1+1+2cosacos/3+2sin〃sin尸/.cos£—a=—L27r47r由于〃一二£02〃/3-a=或/一a二
7.127r47r同理可得cos7—a=-]同样有7—a=3-或/-a=《一47r但由于0“aB丫兀舄y-a[3-a.[3-a不可能取——2%a-——3。